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Abstract We show that a single analytic expression using
only the labels that distinguish Standard Model mass
eigenstates—the ordering index d ∈ {1, 2, 3} and electric
charge q—fits all fermion mass ratios with high precision and
stable O(1) parameters. The functional form ln(m1/m2) =
dζ1

1 dζ2
2 κ [(d1|q1|)γ (μ)−(d2|q2|)γ (μ)] reproduces all 30 independent

quark ratios from MZ to 1012 GeV with χ2/dof � 10−6

using per-scale fits (24 parameters), fixed-κ fits (18), or
global fits (5–6). Parameters remain near κ � 2.3, ζ1 � 1.16,
ζ2 � −0.8, γ � 1.1. Three orthogonal checks establish
specificity and robustness: (i) a 120-permutation test where
only the physical mapping of ratios to (d, |q|) fits; (ii) a 720-
basis scan in which the adjacent-ratio basis is uniquely pre-
ferred by AIC/BIC and many alternatives fail to converge;
(iii) alternative functional forms are decisively disfavored by
AIC/BIC. The same form, with natural parameters, describes
charged-lepton and neutrino ratios; for q = 0 the charge term
vanishes, leaving pure dζ scaling. We sketch three minimal
mechanisms—modified Froggatt–Nielsen, partial compos-
iteness, and a Randall–Sundrum overlap—that generate the
additive d–|q| dependence at the exponent level and reduce
to the neutrino limit. The pattern predicts percent-level devi-
ations from standard running near 1014 GeV and, with meV-
scale anchors, Σmν � 0.06 eV. To our knowledge, no pre-
vious empirical relation achieves simultaneous cross-sector
consistency with such parameter stability; the result offers a
compact target for flavor model building.

1 Introduction

The masses of the Standard Model fermions span more than
12 orders of magnitude, yet no accepted principle explains
the observed pattern. Existing empirical relations—Koide’s
charged-lepton formula [1], the Georgi–Jarlskog relation [2],
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Froggatt–Nielsen textures [3] and many others—describe at
most one sector at a time and fail when extended unchanged to
the remaining sectors. Consequently, the literature contains
no single analytic expression that fits all quark, charged-
lepton, and neutrino mass ratios simultaneously.1

We close this gap by exploiting a minimal and model-
agnostic choice of labels for mass eigenstates: an ordering
index d ∈ {1, 2, 3} that ranks the states by mass within a
sector, and the electric charge q in units of |e|. Only q is a
conserved gauge quantum number; d is a bookkeeping index
used to organize the data and fits (we return to this point in
Sects. 4–5). If an underlying organizing principle governs
fermion masses, it may act through these two labels. Guided
by this constraint, we propose the minimal ansatz:

ln

(
m1

m2

)
= dζ1

1 dζ2
2 κ

[
(d1q1)

γ (μ)−(d2q2)
γ (μ)

]
, (1)

where m1 > m2,2 all masses are MS—six reference scales
and uncertainties (across ten orders of magnitude) taken
from [5]3—and with a mildly running exponent,4

1 While a rare intersecting-brane Pati-Salam compactification has been
shown to reproduce all Standard Model masses and mixings [4], that
construction requires 12 adjoint Higgs fields and significant flux tuning,
placing it well outside the simple texture, Koide-type, GUT, or seesaw
ansatz considered here.
2 Here the subscripts 1/2 denote the heavier/lighter mass within that
pair; they are not the global indices used later in the basis scan.
3 All masses up to 1012 GeV are taken from [5], which are derived
from PDG world averages and evolved using five-loop quantum chro-
modynamics (QCD) renormalization-group equations; they coincide
with the latest PDG inputs at their respective renormalization scales
within quoted uncertainties. For comparison with independent lattice
determinations, see the FLAG 24 averages [6].
4 This running exponent plays a role similar to an anomalous dimen-
sion in quantum field theory: it governs the scale dependence of effec-
tive mass ratios, even though the formula itself is not derived from a
renormalizable Lagrangian.
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γ (μ) = a + b ln(μ/MZ ) [5 param.], or

γ (μ) = a + b ln(μ/MZ ) + c ln2(μ/MZ ) [6 param.]. (2)

Equation (1) reproduces

1. all 30 independent quark mass ratios between MZ and
1012 GeV,

2. both charged-lepton ratios over the same scales,5 and
3. the two neutrino ratios implied by NuFIT-6.0 [7] oscilla-

tion data.

No structural modification is required as we move from one
sector to the next, and all fitted parameters remain O(1).

The empirical strength of Eq. (1) varies with data rich-
ness. For quarks, 30 measurements confront at most five
or six parameters,6 yielding χ2/dof ∼ 10−5 and residuals
below the quoted experimental uncertainties. Charged lep-
tons offer a consistency test with under-determined param-
eters; nonetheless, the fitted values stay natural in size. For
neutrinos, where q = 0 removes the κ term entirely, the
formula reduces to dζ scaling and predicts absolute masses
once the lightest eigenvalue is anchored. In each section, we
contrast these results with the best-known alternatives and
show explicitly why those alternatives cannot describe all
three sectors at once.

The decision to parametrize mass ratios using only gener-
ation index and electric charge—the two labels that univer-
sally distinguish Standard Model fermions—was motivated
by seeking maximum empirical coverage with minimal the-
oretical bias. The surprising success of this ansatz, particu-
larly the cross-sector universality and the permutation anal-
ysis, suggests these labels may play a more fundamental role
in flavor physics than previously appreciated [8]. Section 7
translates these empirical findings into concrete guidance for
model builders.

Our main findings are summarized here and detailed in
the following sections:

– Section 3 demonstrates the quark fits across multiple
approaches, establishes parameter stability when fitting
with or without experimental uncertainties, shows that
even constraining κ to be scale-independent preserves
the empirical pattern, and proves through comprehensive
permutation analysis that only the physical assignment of
quantum numbers to mass ratios yields acceptable fits.

– Section 4 applies the same structure to charged lep-
tons, highlighting natural parameter sizes despite under-
determination.

5 Charged-fermion ratios drift by (1.0 ± 1.4) × 10−3 from MZ to
1012 GeV, consistent with zero, so a constant γ suffices.
6 We test both a five-parameter γ (μ) = a + b ln(μ/μ0) and six-
parameter γ (μ) = a + b ln(μ/μ0) + c ln2(μ/μ0), with μ0 = MZ .

– Section 5 treats the q = 0 neutrino limit, derives
absolute-mass predictions, and explains why the ratios
are expected not to run.

– Section 6 collects falsifiable consequences: quark ratios
at 1014 GeV via deviations from RunDec v3.1 [9] at
five-loop QCD and two-loop electroweak orders, and val-
ues for Σmν ,mβ , andmββ relevant to upcoming surveys.

– Section 7 identifies specific theoretical modifications
required for flavor models to reproduce the empirical pat-
tern, including constraints on Froggatt–Nielsen, warped
extra dimensions, and discrete symmetry frameworks.

– Section 8 discusses the hierarchy of evidence strength
across sectors, compares Eq. (1) with texture and grand
unified theory (GUT) relations, and outlines possible the-
oretical origins.

– Change-of-basis scan (information criteria). Among all
720 independent ordered chained five-ratio bases (adja-
cent basis plus 719 alternatives), the adjacent basis is
uniquely preferred: it is the only basis whose five-
parameter global fit attains a negativeAkaike information
criterion (AIC; same conclusion with the Bayesian infor-
mation criterion [BIC]). Of the 719 non-adjacent bases,
only 343 even admit a finite-likelihood fit; the remaining
376 fail to converge (effectively “+∞” AIC). See Fig. 2
and Table 1.

2 A puzzle in plain sight

Figure 1 plots the five quark-mass ratios at the six reference
scales used in this study. Neither a linear (shown) nor the
logarithmic view (not shown) reveals a monotonic or poly-
nomial trend; the points resemble uncorrelated scatter. What
follows shows that the “scatter” is in fact threaded by a sim-
ple expression whose four shape parameters are surprisingly
stable under every refitting scheme we could devise.

Fig. 1 Quark-mass ratios at six reference scales. No simple trend is
apparent, motivating the search for an empirical organizing principle
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Throughout the paper, we underscore three empirical
facts: (i) there is no a priori reason why the same functional
form should succeed across all three sectors, each with differ-
ent levels of empirical constraint; (ii) alternative relations fail
to do so without sector-specific amendments; and (iii) all fit-
ted parameters remain natural in magnitude. Taken together,
these points argue that Eq. (1) captures a genuine organizing
principle behind the fermion mass spectrum, independent of
any ultraviolet model.

3 Quark sector

Six reference scales—91.1876 GeV (MZ ), 125.1 GeV,
173.1 GeV, 105 GeV, 108 GeV, and 1012 GeV—are provided
by the running-mass compilation of Huang [5]. At each scale,
we construct the five successive ratios,

{
md/mu, ms/md , mc/ms, mb/mc, mt/mb

}
,

so that all 30 independent quark ratios enter the analysis.

Whyconsecutive ratios sufficeThe five adjacent-generation
ratios form an algebraically independent basis for all quark
mass ratios. Writing rk ≡ ln(mk+1/mk) after fixing a
global ascending enumeration (u, d, s, c, b, t) ≡ (1, . . . , 6)

(indices increase with mass; this enumeration is independent
of the pairwise convention m1 > m2 used in Eq. (1)),

ln

(
mi

m j

)
=

i−1∑
k= j

rk (i > j).

Thus, in log space the vector of adjacent ratios r =
(r1, . . . , r5)

T spans the Z-module of all ratio logs; any
other independent five-tuple of ratios is obtained by a left
multiplication r′ = A r with an integer unimodular matrix
A ∈ GL(5, Z). In a properly propagated (co)variance treat-
ment this change of basis leaves the weighted least-squares
optimum invariant up to numerical rounding, so the choice of
adjacent ratios is a convenience, not a bias (see Appendix B
for a compact proof).

Practical basis choice: information content and numer-
ical stability Appendix C proves that, with full covariance
propagation, changing the basis of ratios is a unimodular
transformation that leaves the weighted least-squares opti-
mum invariant. In practice, however, one often works with
central values or with incomplete covariance, and then the
basis choice can affect both convergence and model selec-
tion metrics. To test robustness we evaluated the same five-
parameter global fit (Sect. 3.3) over all integer, full-rank
five-tuple ordered chained “ratio bases” built from pairwise
quark-mass ratios at each reference scale (720 ordered bases

Fig. 2 Information-criterion scan over all five-ratio bases. Each point
is one basis; ordinate: AIC from the five-parameter global fit; abscissa:
dynamic range of that basis (max/min across its five ratios pooled over
the six reference scales). Red dot: adjacent basis, the only one with
negative AIC. Blue points: other bases that converge (all with large,
positive AIC). Non-convergent bases (376 of the 719 non-adjacent) are
not plotted and correspond to effectively infinite AIC. BIC shows the
same qualitative separation. AICs > 500 are not shown

in total, including the adjacent basis). For each basis we com-
puted the Akaike information criterion (AIC) under a com-
mon Gaussian least-squares likelihood with the same N and k
across bases.7 Figure 2 shows AIC versus a proxy for numer-
ical conditioning (“dynamic range”; see Appendix C).

Specifically, we enumerated all 720 ordered chained five-
ratio bases (Hamiltonian paths), of the form mi1/mi2 , mi2/

mi3, mi3/mi4 , mi4/mi5 , mi5/mi6 over all 6! permutations
(i1, . . . , i6). These are a distinguished subset of the admissi-
ble spanning-tree bases (any five ratios form a basis iff their
numerator–denominator graph is a connected tree). We focus
on chained trees because—while not well conditioned—they
are less badly pathological: they compress the dynamic range
of the five basis ratios (typically smaller | ln rk | than non-
chained choices). With only diagonal uncertainties propa-
gated, the larger dynamic ranges of non-chained trees make
the normal equations more ill-conditioned, leading to fre-
quent non-convergence and decisively worse information cri-
teria.8

7 Because N and k are fixed across the basis scan, BIC shifts all AIC
values by a constant and yields the same ordering; the adjacent basis is
also the only one with negative BIC. We therefore show AIC only. R2

is not informative for this non-linear, cross-basis comparison because
it does not penalize model complexity and is not invariant under basis
rescalings.
8 There are 66−2 = 1296 labeled spanning trees on six masses (Cay-
ley). Accounting for orientation of each ratio (numerator/denominator)
gives 1296 × 25 = 41,472 unordered, oriented bases; allowing arbi-
trary ordering of the five ratios yields 1296 × 25 × 5! = 4,976,640
ordered, oriented bases. We restrict attention to the 6! = 720 chained
(Hamiltonian-path) bases because, under diagonal-only uncertainties,
they are less badly pathological (smaller dynamic-range spreads) than
generic trees, which typically suffer markedly worse conditioning.
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Table 1 Outcome of the
change-of-basis scan for the
five-parameter global fit

Category Count AIC sign Notes

Adjacent basis 1 Negative Unique best (also negative BIC)

Other bases: converged 343 Positive All decisively worse

Other bases: no fit 376 +∞ Optimizer fails to find a finite likelihood

Total non-adjacent 719 More bases fail than succeed

Table 2 Four-parameter fit to the five quark ratios at each scale. Errors
are statistical 1σ values propagated from Huang [5]; current lattice-
QCD systematic uncertainties, estimated at ∼ 0.5% for bottom-quark
masses—based on N f = 2 + 1 + 1 lattice determinations [6]—would

rescale all errors uniformly and do not affect the central values. The
same convention is used in Tables 3 and 4. All quoted masses are MS
values at the scales indicated. Corresponding p-values range from ∼0.01
to 0.03 for individual parameters

μ [GeV] Fit type κ ζ1 ζ2 γ χ2/dof

91.2 With uncertainties 2.367(5) 1.1564(12) −0.7671(17) 1.0949(24) 2.40 × 10−6

125 With uncertainties 2.368(5) 1.1562(12) −0.7691(18) 1.0975(25) 2.80 × 10−6

173 With uncertainties 2.364(5) 1.1558(11) −0.7699(17) 1.1011(23) 2.42 × 10−6

105 With uncertainties 2.314(5) 1.1634(13) −0.8019(19) 1.1565(26) 4.54 × 10−6

108 With uncertainties 2.278(6) 1.1697(14) −0.8241(21) 1.1945(29) 7.40 × 10−6

1012 With uncertainties 2.239(5) 1.1766(14) −0.8448(22) 1.2310(29) 9.04 × 10−6

91.2 Central values 2.340 1.1609 −0.7719 1.1061 8.31 × 10−4

125 Central values 2.339 1.1611 −0.7743 1.1096 9.59 × 10−4

173 Central values 2.338 1.1602 −0.7745 1.1119 7.99 × 10−4

105 Central values 2.287 1.1681 −0.8067 1.1682 1.05 × 10−3

108 Central values 2.249 1.1749 −0.8292 1.2074 1.38 × 10−3

1012 Central values 2.212 1.1819 −0.8499 1.2443 1.50 × 10−3

Two empirical facts stand out. (i) The adjacent basis is
the only basis with negative AIC (same for BIC), and it lies
at the extreme left-minimal dynamic range. (ii) Many bases
simply do not fit: excluding the adjacent basis, only 343 out
of the remaining 719 bases yielded any convergent fit at all;
376 failed to converge or returned ill-posed parameters, i.e.,
effectively infinite AIC/BIC. Thus, more bases fail than suc-
ceed. These observations support our use of adjacent ratios in
the main analysis: beyond the formal change-of-basis invari-
ance, the adjacent basis is also the information-optimal and
numerically stable choice in practice. See Fig. 2 where the
abscissa uses the observed ratio dynamic range across scales;
Appendix C also defines a purely algebraic proxy D(A) for
basis conditioning. The two are highly correlated across the
720 bases and lead to the same separation.

3.1 (4 × 6) = 24-parameter per-scale fit

Equation (1) was fitted independently at each scale with four
free parameters (κ, ζ1, ζ2, γ ). Table 2 lists the best-fit values,
one-sigma errors, and the resulting χ2/dof. Residuals never
exceed ∼ 4% and χ2/dof ≤ 9×10−6. All parameters remain
in the natural range 2.2 � κ � 2.4, 1.15 � ζ1 � 1.18,
−0.85 � ζ2 � −0.77, and 1.09 � γ � 1.23. With residuals
� 4% confronting experimental errors (which dominate the

lattice uncertainties) from 0.25% (top/bottom at 1012 GeV) to
24% (down/up at MZ ), the resulting χ2/dof ∼ 10−5 reflects
the formula’s accuracy in reproducing central values rather
than over-fitting.9

Crucially, fitting to central values alone (ignoring exper-
imental uncertainties entirely) yields virtually identical
parameter values and only modest increases in χ2/dof to
∼ 10−3. This demonstrates that the empirical pattern is not
an artifact of the uncertainty weighting scheme but reflects
genuine structure in the mass ratios themselves. The param-
eter stability across both fitting approaches, both with and
without uncertainties, as well as the quality of the fit as shown
in Fig. 3, is remarkable.

3.2 (3 × 6) = 18-parameter per-scale fit (fixed κ)

Freezing κ at its MZ value, κ = 2.36707, reduces the fit
to three parameters per scale. Table 3 shows that χ2/dof
decreases for every scale up to 105 GeV and then increases
only slightly up to 1012 GeV, a strong indication that κ is a

9 Because experimental uncertainties in quark mass evolution are dom-
inated by correlated renormalization scale uncertainties that affect all
ratios similarly, the effective degrees of freedom are reduced, leading
to χ2/dof 	 1; see Appendix A for details.
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Fig. 3 Comparison of all 24-parameter fits (κ free) across the six energy scales. Even when κ is allowed to vary, the parameter values remain
remarkably stable

genuine scale-independent factor rather than a tuning knob.
Overall parameter shifts are � 5.5 % and residuals increase
slightly with the maximum residual being ∼ 5%. Figure 4
illustrates the high accuracy of the fit.

Again, as Table 3 shows, fitting to central values alone pro-
duces nearly identical parameters with χ2/dof rising only
modestly to ∼ 10−3. The parameter stability across both
uncertainty-weighted and central-value-only fits confirms
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Table 3 Three-parameter refit with κ fixed to its MZ value. Corresponding p-values range from ∼ 10−6 to ∼ 10−3

μ [GeV] Fit type ζ1 ζ2 γ χ2/dof

91.2 With uncertainties 1.15643(6) −0.76707(9) 1.09492(3) 1.20 × 10−6

125 With uncertainties 1.15645(6) −0.76944(9) 1.09811(3) 1.40 × 10−6

173 With uncertainties 1.15539(6) −0.76930(9) 1.09991(3) 1.22 × 10−6

105 With uncertainties 1.15513(9) −0.78898(14) 1.13158(5) 4.51 × 10−6

108 With uncertainties 1.15542(14) −0.80187(21) 1.15121(7) 1.25 × 10−5

1012 With uncertainties 1.15571(19) −0.81221(28) 1.16709(10) 2.76 × 10−5

91.2 Central values 1.1565 −0.7663 1.0943 4.45 × 10−4

125 Central values 1.1565 −0.7686 1.0974 5.10 × 10−4

173 Central values 1.1554 −0.7687 1.0994 4.33 × 10−4

105 Central values 1.1546 −0.7904 1.1326 8.18 × 10−4

108 Central values 1.1543 −0.8050 1.1537 1.39 × 10−3

1012 Central values 1.1540 −0.8177 1.1714 2.08 × 10−3

that the fixed-κ constraint captures genuine physical struc-
ture rather than statistical fluctuations.

3.3 Global fits

Treating all 30 ratios simultaneously, we test both linear and
quadratic parametrizations of the running exponent:

γ (μ) = a + b ln
(
μ/MZ

)
[5 param.]

γ (μ) = a + b ln
(
μ/MZ

) + c ln2(μ/MZ
)

[6 param.].

Table 4 presents both fits. The five-parameter form
achieves χ2/dof = 9.29 × 10−6, while adding the very
mild curvature term reduces this to 3.86 × 10−6. For the
fits with uncertainties, there is a substantial improvement in
the information theoretic criteria when moving from the five-
parameter fit to the six-parameter fit. Specifically, the Akaike
information criterion (AIC) and the Bayesian information
criterion (BIC) go from −100.237 and −91.8299 to −126.26
and −116.45, respectively (more negative is an improve-
ment). However, the central value fits show only insignificant
changes in AIC and BIC when moving from a five-parameter
fit to a six-parameter fit. This suggests that the information-
criterion pay-off is marginal. Thus, parsimony favors the five-
parameter form; the six-parameter version merely confirms
that a small quadratic bend in γ (μ) is numerically allowed
but not required.

Figure 5 displays both uncertainty-weighted global fits,
showing the exceptional agreement between the formula and
all 30 data points across six energy scales. Every residual lies
well within the quoted experimental uncertainties, with the
formula tracking both the central values and their error bars
with remarkable precision. The χ2/dof ∼ 10−6 reflects the

formula’s ability to reproduce not just the pattern of mass
ratios, but their experimental precision as well.

Most remarkably, both global fits show parameter stabil-
ity when fitted to central values alone, completely ignoring
experimental uncertainties. The quality of the central value fit
is apparent from Fig. 6: almost every predicted value is coin-
cident with the central value being fitted. The five-parameter
central-value fit yields κ = 2.287 (vs. 2.316 with uncertain-
ties), ζ1 = 1.169 (vs. 1.164), ζ2 = −0.802 (vs. −0.795),
and a = 1.149 (vs. 1.134)—variations of less than 2%. The
six-parameter fit shows similar stability. This consistency
across fitting methodologies demonstrates that our empirical
law captures genuine structure in the fermion mass spectrum
rather than artifacts of the uncertainty weighting scheme.
Both central-value fits reproduce every data point with resid-
uals |Δ ln(mi/m j )| ≤ 0.04, approximately 4% in the ratios
themselves (see Fig. 6), so their χ2/dof 	 1 reflects the
formula’s intrinsic accuracy, not over-fitting to experimental
errors.

3.4 Comprehensive stability analysis

The parameter stability demonstrated in each individual fit
above represents significant robustness. Figure 7 displays the
residuals of the 18-parameter fit; every point lies within
|Δ ln(mi/m j )| ≤ 0.04 (4 % in the ratio itself). Similarly,
Fig. 8 displays the residuals of the two global fits. Table 5
collects the χ2/dof values for all eight fits (with uncertainties
and central values). Table 6 lists the corresponding param-
eters, demonstrating their stability at the � 5% level across
all fitting strategies.

The key empirical finding is that the same four O(1) num-
bers emerge regardless of fitting methodology: whether we
use 24 parameters (4 × 6), 18 parameters (3 × 6), or global
fits with 5–6 parameters; whether we weight by experimental
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Fig. 4 Comparison of all 18-parameter fits (κ fixed) across the six energy scales. The remarkable parameter stability across scales demonstrates
the robustness of the empirical pattern

uncertainties or fit central values only; whether we allow all
parameters to float or constrain κ to be scale-independent.
This consistency suggests we have identified a fundamen-

tal organizing principle in the fermion mass spectrum, not a
statistical artifact.

The same four numbers reappear with consistent O(1)

values in the lepton and neutrino sectors.
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Table 4 Five- and six-parameter global fits with γ (μ) = a+b ln(μ/MZ ) and γ (μ) = a+b ln(μ/MZ )+c ln2(μ/MZ ), respectively. Corresponding
p-values are extremely small, ranging from ∼ 10−30 to ∼ 10−6 for individual parameters, indicating highly significant fits

Fit Type κ ζ1 ζ2 a b [10−3] c [10−5] χ2/dof

5-param w/unc. 2.316(8) 1.1638(19) −0.7949(29) 1.1340(40) 1.587(9) – 9.29 × 10−6

5-param central 2.287 1.1686 −0.8019 1.1494 1.440 – 6.26 × 10−4

6-param w/unc. 2.315(5) 1.1639(13) −0.7950(19) 1.1201(25) 3.130(26) −5.20(9) 3.86 × 10−6

6-param central 2.287 1.1686 −0.8019 1.1353 2.971 −4.948 5.98 × 10−4

3.5 Specificity test: permutation analysis

To address potential concerns about mathematical flexibility
versus physical content, we performed a comprehensive test
of Eq. (1)’s specificity. Given that, in our empirical setup,
each Standard Model mass eigenstate is uniquely labeled
by the pair {d, q}, we ask: does our functional form work
only when mass ratios are correctly assigned to their physical
(d, q) labels, or could it fit any arbitrary assignment equally
well?

We systematically tested all 5! = 120 possible permu-
tations of the five quark mass ratios at each energy scale,
keeping the {d, q} assignments fixed but reassigning which
measured mass ratio corresponds to which quantum number
pair. For each permutation, we performed the most uncon-
strained fit (four free parameters per scale) and computed the
root-mean-square error (RMSE) relative to the unpermuted,
physical assignment.

Figure 9 displays the results as a function of the normal-
ized Euclidean distance from the physical assignment.10 The
pattern is striking and consistent across all six energy scales:
only the physical assignment (distance = 0) yields accept-
able fits with RMSE � 0.01. Every alternative permutation
produces dramatically worse results, with RMSE values typ-
ically very substantially larger. No other assignment among
the 119 alternatives approaches the quality of the physical
mapping.

This result demonstrates that Eq. (1) is not a flexible curve-
fitting expression but rather encodes specific physical struc-
ture. The functional form requires the correct correspon-
dence between quantum numbers and mass ratios to achieve
its remarkable precision, providing strong evidence that it
captures genuine organizing principles in the fermion mass
spectrum rather than mathematical coincidence.

10 The normalized Euclidean distance between physical mass ratios mi

and permuted ratios m′
i is defined as

√∑
i

(
mi−m′

i
(mi+m′

i )/2

)2
, where each

difference is normalized by the average of the corresponding ratios to
ensure scale invariance.

3.6 Change-of-basis and information criteria

Equation (1) is written in terms of adjacent generation ratios,
but any five ratios whose numerator–denominator graph is
a spanning tree (i.e., a connected set of five ratios link-
ing all six flavors) form a valid basis. In an ideal analysis
with the full 5 × 5 covariance propagated for each basis,
weighted least squares would be invariant under unimodular
changes of basis (Appendix B). In practice, published inputs
provide diagonal (or effectively diagonal) uncertainties for
the five ratios at each scale; with that pragmatic weighting
the invariance is not guaranteed. We therefore performed an
exhaustive, information-theoretic scan over all independent,
chained, five-ratio bases:

– for each basis we repeated the five-parameter global fit
(Sect. 3.3);

– we recorded the Akaike information criterion, AIC =
2k − 2 ln L̂, and the Bayesian information criterion,
BIC = k ln N − 2 ln L̂, with k = 5 parameters and
N = 30 data points;

– to characterize conditioning, we computed the dynamic
range of a basis as the ratio of the largest to the smallest of
its five ratios pooled over the six reference scales (larger
values indicate a more ill-conditioned basis).

Results Out of the 720 bases (adjacent + 719 alterna-
tives), only the adjacent basis achieves a negative AIC (and
BIC); every other basis that converges yields large, positive
AIC/BIC values, i.e., decisively worse fits. Moreover, more
bases fail than succeed: among the 719 non-adjacent bases,
only 343 admit any finite-likelihood optimum, while 376 do
not converge at all under the same fitting setup (effectively
AIC → +∞). Figure 2 visualizes AIC versus basis dynamic
range. The adjacent basis (red dot) sits alone in the negative-
AIC quadrant; all other fits (blue points) lie far away. Because
AIC/BIC compare penalized likelihoods, these gaps corre-
spond to ΔAIC = O(102) or larger—decisive on the usual
Jeffreys/Burnham–Anderson scale—and make separate R2

discussion unnecessary (Table 1).11

11 AIC and BIC are computed for the same data and parameter count
across bases; “more negative” indicates better support. The exact neg-
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Fig. 5 Global fits with experimental uncertainties included. Top: five-
parameter fit with χ2/dof = 9.29 × 10−6. Bottom: six-parameter fit
with χ2/dof = 3.86 × 10−6. The empirical value is in blue and the

fitted value is in red. The excellent agreement between theory and data
demonstrates the robustness of the empirical pattern
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Fig. 6 Global fits to central values only (no error bars). Top: five-parameter fit. Bottom: six-parameter fit. The empirical value is in blue and the
fitted value is in red. The excellent agreement demonstrates that the pattern is not an artifact of experimental uncertainties
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Fig. 7 Residuals of the 18-parameter (3×6) fit

This scan complements the permutation test of Sect. 3.5.
The permutation test fixes the quantum-number assignment
and shows that only the physical mapping of (d, q) to mea-
sured ratios is viable. The present scan fixes the mapping and
varies the ratio basis; it shows that, under realistic weighting,
the adjacent basis is uniquely well posed and information-
theoretically preferred.

3.7 Alternative functional forms

To check whether simpler or differently factorized expres-
sions can perform as well as Eq. (1), we repeated the global
quark fit with uncertainties for a representative set of alter-
natives. In all fits we evaluate (d|q|)γ (μ) with q → |q| so
that non-integer γ (μ) yields real powers; the signed-power
variant (q without | · |) fails numerically. Table 7 summarizes
the results.

Two robust conclusions emerge. First, the generation pref-
actor dζ1

1 dζ2
2 is required: removing it (“No-d prefactor”)

ative value for the adjacent basis depends slightly on whether one uses
the five- or six-parameter global form; both yield the same qualitative
conclusion.

degrades the information criteria by ΔAIC ∼ O(102) rela-
tive to the five-parameter baseline in Table 4. Second, electric
charge must enter through the combined structure (d|q|)γ (μ):
using |q|γ (μ) alone, or forcing ζ2 = −ζ1 (“Symmetric ζ”),
similarly worsens AIC/BIC by large margins. Allowing a
trivial overall scale ρ inside the κ exponent does not help
and effectively reparameterizes the baseline. The only variant
that improves the information criteria is a very mild quadratic
bend in γ (μ), consistent with the global six-parameter fit
already reported in Table 4. Overall, the five-parameter base-
line is the most parsimonious form that succeeds. For the
basis scan in Sect. 3, we therefore report AIC only. Because
k and N are fixed across that scan, BIC differs from AIC by an
additive constant and yields the same ordering; the adjacent
basis is also the only one with negative BIC.

These functional-form checks are orthogonal to the
change-of-basis scan in Sect. 3.6: the former holds the basis
fixed and varies the ansatz, while the latter fixes the ansatz
and varies the basis; both favor the baseline expression in the
adjacent basis.

These checks, together with the permutation analysis in
Sect. 3.5, show that the multiplicative structure linking gener-
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Fig. 8 Residuals from all global fits, showing consistency between uncertainty-weighted and central-value-only approaches

ation and charge is genuinely specific. Simpler or factorized
alternatives are either decisively disfavored by the informa-
tion criteria (typically byO(102)) or not mathematically well
defined for the data. Apart from a very mild quadratic running
in γ (μ), the five-parameter baseline is the most economical
successful form.

3.8 Comparison with texture approaches

Standard texture models, such as two-charge Froggatt–
Nielsen schemes [3], fit at most one ratio per generation and
typically require ten or more parameters. Koide’s [1] relation
does not extend to quarks; the Georgi–Jarlskog relation [2]
matches a single ratio at a unification scale but fails else-
where. In contrast, Eq. (1) reproduces all 30 quark ratios
with at most six parameters and χ2/dof 	 10−5.

The same analytic form is now applied, unchanged, to the
charged lepton and neutrino sectors.

4 Charged lepton sector

At each reference scale, we work with the two ascending
ratios mμ/me and mτ /mμ.12 Because these ratios vary by
less than 0.0001±0.0014 (i.e., consistent with zero) between
MZ and 1012 GeV, the 12 data points provide only a modest
lever arm against the four parameters in Eq. (1). The fit is
therefore a consistency test: success is not guaranteed even
though the system is formally under-determined.13

4.1 Four-parameter fit

Table 8 shows the best-fit values. Residuals are below 2.5 ×
10−4, giving χ2/dof = 9.6 × 10−11. All parameters remain
O(1) and of the same magnitude as in the quark sector. That
a single analytic form reproduces both charged leptons and
quarks with natural coefficients is, by itself, non-trivial.

12 For charged leptons, we use |q| = 1; the sign of q does not enter
Eq. (1).
13 Over the same ten-decade range as the quarks, the ratios drift by
(0.0 ± 0.8) × 10−3 for mμ/me and (0.1 ± 1.4) × 10−3 for mτ /mμ,
completely consistent with scale-independence.
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Table 5 χ2/ν for the quark sector. The first four fits are performed scale by scale; the five- and six-parameter rows are global fits to all 30 ratios

Fit and weighting 91 GeV 125 GeV 173 GeV 105 GeV 108 GeV 1012 GeV

(4 × 6) w/unc. 2.40 × 10−6 2.80 × 10−6 2.42 × 10−6 4.54 × 10−6 7.40 × 10−6 9.04 × 10−6

(4 × 6) central 8.31 × 10−4 9.59 × 10−4 7.99 × 10−4 1.05 × 10−3 1.38 × 10−3 1.50 × 10−3

(3 × 6) w/unc. 1.20 × 10−6 1.40 × 10−6 1.22 × 10−6 4.51 × 10−6 1.25 × 10−5 2.76 × 10−5

(3 × 6) central 4.45 × 10−4 5.10 × 10−4 4.33 × 10−4 8.18 × 10−4 1.39 × 10−3 2.08 × 10−3

6-par w/unc. 3.86 × 10−6 (global)

6-par central 5.98 × 10−4 (global)

5-par w/unc. 9.29 × 10−6 (global)

5-par central 6.26 × 10−4 (global)

Table 6 Parameter values for
all eight quark-sector fits. For
the per-scale fits, the quoted ± is
the scatter of the six independent
determinations; for global fits, it
is the fit uncertainty

Fit and weighting κ ζ1 ζ2 γ (MZ )

(4 × 6) w/unc. 2.30 ± 0.06 1.163 ± 0.009 −0.797 ± 0.033 1.147 ± 0.059

(4 × 6) central 2.29 ± 0.06 1.168 ± 0.009 −0.802 ± 0.033 1.158 ± 0.059

(3 × 6) w/unc. 2.367 (fixed) 1.156 ± 0.001 −0.785 ± 0.020 1.124 ± 0.031

(3 × 6) central 2.367 (fixed) 1.155 ± 0.001 −0.786 ± 0.022 1.125 ± 0.033

6-par w/unc. 2.315 ± 0.015 1.164 ± 0.004 −0.795 ± 0.004 1.120 ± 0.002

6-par central 2.287 1.169 −0.802 1.135

5-par w/unc. 2.316 ± 0.015 1.164 ± 0.004 −0.795 ± 0.004 1.134 ± 0.002

5-par central 2.287 1.170 −0.802 1.149

Running γ (μ)

Allowing γ (μ) = a + b ln(μ/MZ ) or a + b ln(μ/MZ ) +
c ln2(μ/MZ ) produces χ2/dof ∼ 10−9 but returns order-
unity or larger standard errors for some parameters. The
degeneracy simply reflects the near scale-independence of
the lepton ratios: current data cannot meaningfully distin-
guish a constant from a slowly varying exponent. For leptons,
we therefore keep the constant-γ fit for the rest of the paper.

4.2 Context

Koide’s [1] relation provides a single constraint on the three
charged-lepton masses using a different functional form that
fails for quarks and neutrinos. Texture models fit the lepton
ratios only at the cost of abandoning the quark hierarchy or
of introducing sector-specific matrices. Equation (1) achieves
simultaneous agreement with the quark fits (Sect. 3) without
any additional sector-dependent factor and with O(1) coeffi-
cients. This cross-sector coherence strengthens the empirical
claim that Eq. (1) captures a genuine organizing principle in
the fermion spectrum.

The neutrino sector, where q = 0 eliminates the κ term
entirely, provides an even more severe test and is treated next.

5 Neutrino sector

In the neutrino sector, we normally discuss mass eigenstates
rather than flavor eigenstates. On the other hand, our label, d,
represents the generation number. In many flavor construc-
tions, the labels that diagonalize the mass matrix need not
coincide with the weak-interaction basis, so one often works
with “effective” generation indices. A well-known example
is in A4 models of lepton flavor (e.g., [10]) where the mass
eigenstates arise from non-trivial mixtures of the symme-
try triplet, and one effectively re-labels them by descending
mass rather than gauge quantum numbers. In our ansatz, we
similarly take di ∈ {1, 2, 3} to index the mass eigenstates in
order of magnitude, understanding that these are shorthand
for the actual mixed states in the weak basis. Therefore, for
mass eigenstates, d represents an effective generation index
reflecting the average generation content of each mass eigen-
state rather than integer labels.

In normal ordering for neutrinos, m1 < m2 < m3.
However, our convention for quarks and leptons has been
m1 > m2 in the ansatz. For neutrinos, therefore, we write
the master ansatz as:

ln

(
mi+1

mi

)
= dζ1

i+1 d
ζ2
i κ

[
(di+1qi+1)

γ −(di qi )γ
]
,

where we label the heavier mass as i + 1 and the lighter
mass as i . However, the ansatz simplifies radically for neu-

123



 1082 Page 14 of 22 Eur. Phys. J. C          (2025) 85:1082 

Fig. 9 RMSE as a function of normalized Euclidean distance for
all 120 possible permutations of quark mass ratio assignments. Only
the physical assignment (distance = 0) yields acceptable fits across

all energy scales. Alternative assignments produce dramatically larger
residuals, demonstrating the specificity of the empirical pattern

Table 7 Functional-form checks (global quark fit with uncertainties;
same data as Table 4). The five-parameter baseline in Table 4 has AIC
≈ −100.24 and BIC ≈ −91.83. Smaller (more negative) AIC/BIC indi-

cate better fits. “Ill-posed” means the optimizer fails or returns complex
values due to non-integer powers of signed charges

ID Functional form Params AIC BIC

Baseline ln m1
m2

= dζ1
1 dζ2

2 κ(d1|q1|)γ (μ)−(d2|q2|)γ (μ)
5 −100.24 −91.83

No-d prefactor ln m1
m2

= κ(d1|q1|)γ (μ)−(d2|q2|)γ (μ)
3 80.64 86.25

|q| only ln m1
m2

= dζ1
1 dζ2

2 κ |q1|γ (μ)−|q2|γ (μ)
5 3.16 11.57

Symmetric ζ ln m1
m2

= dζ
1 d

−ζ
2 κ(d1|q1|)γ (μ)−(d2|q2|)γ (μ)

4 12.73 19.73

Log-additive split ln m1
m2

= c0 + α1 ln d1 + α2 ln d2 + ρ
(|q1|γ (μ) − |q2|γ (μ)

)
6 95.61 105.42

Poly. in (d|q|) ln m1
m2

= dζ1
1 dζ2

2 κ
c1

[
(d1|q1|)−(d2|q2|)

]
+c2

[
(d1|q1|)2−(d2|q2|)2

]
6 Ill-posed Ill-posed

No | · | on q Same as baseline with q → q (signed power) 5 Ill-posed Ill-posed

Scale in exponent ln m1
m2

= dζ1
1 dζ2

2 κ ρ[(d1|q1|)γ (μ)−(d2|q2|)γ (μ)] 6 −95.97 −87.56

γ (μ) quadratic Baseline with γ (μ) = a + b ln(μ/MZ ) + c ln2(μ/MZ ) 6 −126.26 −116.45

trinos because qi = 0. As we said earlier, however, we do
not know the precise values for di+1 and di for the neutrino
sector since we are talking about mass eigenstates. For illus-
tration, we take the d values to be 1, 2, 3 as representative

generation indices, though the actual effective values may
differ depending on the flavor-mass eigenstate mixing pat-
tern. The key point is not the specific ζ values, which depend
on the choice of effective generation indices, but rather that
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Table 8 Charged-lepton fit with
four free parameters. Quoted
errors are 1σ statistical
uncertainties propagated from
Ref. [5]

Parameter Estimate Std. error [10−6] t-stat. [105] χ2/dof

κ 2.91835 2.94 9.9 9.6 × 10−11

γ 0.885797 5.33 1.7

ζ1 1.10965 1.76 6.3

ζ2 −1.49050 13.3 −1.1

natural O(1) values emerge for any reasonable assignment
of d1, d2, d3. Because d1, d2, d3 are each constrained to lie
between 1 and 3, other reasonable assignments, e.g., taking di
weighted by Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
mixing angles, would yield qualitatively similar O(1) natu-
ral parameter values, confirming the robustness of the cross-
sector consistency (for a full renormalization-group analysis
including mixing effects, see [11]).

Furthermore, because q = 0, the κ term vanishes entirely.
Using 1, 2, 3 for the generation index, we see that the ansatz
simplifies radically14:

ln

(
m2

m1

)
= 2ζ1, ln

(
m3

m2

)
= 3ζ1 2ζ2 . (3)

There are only two unknown exponents and exactly two mea-
sured mass ratios, so any choice of a lightest mass m1 fixes
(ζ1, ζ2) algebraically. The neutrino sector therefore serves as
a self-consistency check rather than a genuine fit.15 No mat-
ter what the actual values of d1, d2, d3 are, the key point is
that the ζ values would remain reasonably O(1) regardless
of what non-integer values of di we used since those values
are constrained to be between 1 and 3. We continue therefore
with d1, d2, d3 = 1, 2, 3 and proceed as follows.

Log-log form and anchor scan With qi = 0, the κ-term
vanishes, so we work entirely in double logs. Denoting L21 ≡
ln(ln(m2/m1)) and L32 ≡ ln(ln(m3/m2)), Eq. (1) reduces
to

L21 = ζ1 ln 2, L32 = ζ1 ln 3 + ζ2 ln 2. (4)

14 Any reasonable assignment of effective generation indices di ∈
[1, 3] for neutrino mass eigenstates yields O(1) values for ζ1,2, con-
firming the robustness of cross-sector consistency. The specific choice
di = i is illustrative; other assignments (e.g., weighted by PMNS mix-
ing angles) produce qualitatively similar natural parameter values. A
complete treatment would require solving the full mixing problem,
which is beyond our empirical scope.
15 If the lightest mass were exactly zero, the successive ratio m2/m1
(or m3/m2 in inverted ordering) would be undefined, and Eq. (3) would
simply not apply rather than be falsified; present limits still allow that
possibility, so throughout this paper we assume a small but non-zero
smallest mass.

Table 9 Neutrino observables at two illustrative anchors that satisfy
ζ1 > 0, ζ2 < 0 and |ζi | ∼ 1. Errors are 1σ uncertainties from NuFIT-
6.0 [7]

Quantity m1 = 1.0 meV m1 = 1.5 meV

m2 (meV) 8.71 ± 0.11 8.78 ± 0.11

m3 (meV) 50.35 ± 0.25 50.36 ± 0.25

Σmν (eV) 0.0601 ± 0.0003 0.0606 ± 0.0003

mβ (meV) 8.95 ± 0.11 9.02 ± 0.11

ζ1 1.114 ± 0.008 0.822 ± 0.010

ζ2 −0.955 ± 0.017 −0.498 ± 0.019

Hence,

ζ1 = L21

ln 2
, ζ2 = L32 − ζ1 ln 3

ln 2
.

Setting a minimum mass for m1 = 0.0001 eV and scanning
the physically allowed window m1 ≤ 0.03 eV (NuFIT 6.0
splittings and 1σ errors [7]) gives the results summarized in
Table 9.

Cross-sector consistency Quarks and charged leptons favor
ζ1 ≈ +1 and ζ2 ≈ −1. Demanding the same sign pattern
and O(1) size restricts the anchor to16

m1 � 1.5 meV.

Anchors near 1 meV yield ζ1 = 1.11 ± 0.01, ζ2 = −0.96 ±
0.02, remarkably close to the quark and lepton values.

Numerical predictions We adopt the standard observables
Σmν ≡ m1 + m2 + m3, m2

β ≡ ∑
i |Uei |2m2

i , and mββ ≡∣∣∑
i U

2
eimi

∣∣, with Uei the PMNS matrix elements. For the
preferred meV-scale anchors, we obtain

Σmν � 0.061 eV, mβ � 9 meV,

mmin
ββ � 0.46 meV, mmax

ββ � 4.76 meV.
(5)

These lie just below the current Planck+BAO limit (Σmν <

0.09 eV) and beneath KATRIN’s 0.2 eV reach, but sit

16 The sign of ζ1 flips from positive to negative at m1 � 3.426 meV
and the sign of ζ2 flips from negative to positive at m1 � 2.17 meV.
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Table 10 Predicted high-scale log quark mass ratios with one-σ uncertainties propagated from low-scale inputs via RunDec v3.1 [9]. Numbers
in parentheses denote one standard deviation

Ratio d/u s/d c/s b/c t/b

5-param. fit ln ratio pred. 0.748 (8) 2.996 (31) 2.493 (27) 1.475 (9) 4.333 (11)

6-param. fit ln ratio pred. 0.748 (5) 2.996 (20) 2.496 (10) 1.474 (6) 4.345 (8)

RunDec 3.1 0.77 (18) 2.99 (11) 2.46 (8) 1.515 (30) 4.094 (11)

5-param. fit, dev. from RunDec −3(23)% 0.0(4)% 2.0(4)% −2.6(2.0)% 5.8(0.4)%

6-param. fit, dev. from RunDec −3(23)% 0.0(4)% 2.0(4)% −2.7(2.0)% 6.1(0.4)%

squarely in the target ranges of next-generation CMB-S4 sur-
veys and β-decay experiments such as the Project 8 [12] and
HOLMES [13].

Outlook If a future measurement pins down any one of Σmν ,
mβ , or mββ and the effective generation indices are estab-
lished, the log-log relations in Eq. (4) lock ζ1,2 and make the
neutrino sector as predictive—and falsifiable—as the quark
and charged-lepton sectors.

6 Predictions and tests

The empirical pattern established above yields specific, falsi-
fiable predictions across all three fermion sectors that can be
tested by near-term experimental and theoretical advances:

1. Quark sector Using the a+b ln μ and a+b ln(μ/MZ )+
c ln2(μ/MZ ) fits of Sect. 3, we evolve the five successive
ratios from MZ up to 1014 GeV. The relative departure
from a straight RunDec v3.1 prediction is shown in
Table 10.17

High-precision lattice QCD could, with continued algo-
rithmic progress, be able to test the (t/b) prediction at
the ∼ 5% level, provided bottom-quark mass uncertain-
ties improve from the current ∼ 0.5%, as summarized in
FLAG’s latest review [6], toward sub-percent accuracy.
Since mt is already tightly constrained by collider data,
a lattice determination of mb at this level would enable a
direct, sharp test of our model.

2. Charged leptons The fixed-κ fit implies that the two
observed ratios are essentially scale-independent; any
future improvement in the tau mass immediately tight-
ens the allowed (ζ1, ζ2) window.

17 To produce a definitive high-scale prediction, we evolved all six
quark masses to μ∗ = 1014 GeV with RunDec v3.1 [9], using its
five-loop QCD β-function and four-loop heavy-quark decoupling in a
six-flavor scheme. We took α

(5)
s (MZ ) = 0.1179±0.0009, included two-

loop electroweak corrections, and applied standard threshold matching
at each heavy-quark mass. At μ∗ (in GeV), we find mu = 0.00049(8),
md = 0.00107(8), ms = 0.0213(17), mc = 0.248(7), mb =
1.127(11), mt = 67.6(4).

3. Neutrinos Assuming d1, d2, d3 = 1, 2, 3, cross-sector
naturalness (ζ1 ≈ +1, ζ2 ≈ −1) confines the lightest
mass to m1 � 1.5 meV. In that window, the model pre-
dicts Σmν � 0.06 eV and mβ � 9 meV. Stage-IV CMB
surveys and sub-40 meV β-decay experiments (Project
8 [12], HOLMES [13]) will probe this range directly.

– No unconditional prediction can be made until both
the effective generation indices and an anchor observ-
able are determined. Once a β-decay experiment fixes
mβ , Eq. (4) determines (ζ1, ζ2); the model can then
be cross-checked against Σmν or mββ .

– Tritium β decay. KATRIN reaches only mβ � 0.2 eV,
well above our 9 meV target, but the Project 8 [12]
and HOLMES [13] aim for sub-40 meV sensitivity
and could directly test the prediction.

7 Theoretical implications and model-building guidance

The empirical pattern uncovered in Sects. 3–5 imposes strin-
gent constraints on flavor model construction. Rather than
broadly categorizing models as “favored” or “disfavored,”
we outline specific modifications required for representative
theoretical frameworks to reproduce our ansatz.

Because Eq. (1) is multiplicative in Xi j ≡ ln(mi/m j ),
taking a logarithm renders it additive in {ln d, (d|q|)γ }. In
what follows we therefore work at the exponent level, i.e.,
directly with Xi j = ln(mi/m j ), which the mechanisms
below naturally generate as sums.

7.1 Universal constraints from the empirical pattern

Any viable flavor model must explain:

1. The multiplicative structure for the exponent: Xi j ≡
ln(mi/m j ) scales as dζ1

i dζ2
j (equivalently, mi/m j ∝

exp[dζ1
i dζ2

j ] when q = 0).

2. The electric-charge dependence enters through κ(d|q|)γ

with γ ≈ 1.1, where q is the electric charge in units of
|e|.
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3. Cross-sector universality: similar O(1) κ , ζ1, ζ2 values
for quarks and charged leptons

4. The vanishing of the κ term for electrically neutral
fermions (q = 0)

5. Permutation specificity: among 120 possible quantum
number assignments, only the physical one yields accept-
able fits.

These features suggest a deep connection between flavor
structure and gauge quantum numbers that goes beyond con-
ventional model constructions.

7.2 Illustrative modifications for model classes

We present three minimal worked examples that reproduce
the same additive building blocks underlying Eq. (1): (i) a
two-spurion Froggatt–Nielsen (FN) map (Sect. 7.2.1); (ii)
a partial-compositeness (PC) parametrization (Sect. 7.2.2);
and (iii) a warped-overlap construction in Randall–Sundrum
(RS) geometry (Sect. 7.2.3).

7.2.1 Minimal example: two-spurion Froggatt–Nielsen

A horizontal U (1)F with two spurions reproduces the addi-
tive (exponent-level) dependence on {ln d, (d|q|)γ } without
committing to a UV completion. Let

εd ≡ 〈θd〉
Λ

, εq ≡ 〈θq〉
Λ

, 0 < εd,q < 1,

and collect O(1) coefficients into a structured prefactor
Ci j ≡ dζ1/2

i dζ2/2
j , reflecting the fitted generation depen-

dence. Assign effective exponents

Ni ≡ α1 ln di + α0, Mi ≡ β (di |qi |)γ (μ),

with di ∈ {1, 2, 3} and |qi | ∈ {2/3, 1/3, 1, 0} (qi = 0 for
neutrinos). Then diagonal Yukawas take the schematic form

Yii = Cii ε
Ni
d ε Mi

q , mi ∝ Yii .

Taking ratios and logarithms gives

ln
mi

m j
= ζ1 ln di + ζ2 ln d j

+ (ln ε−1
q )

[
(d j |q j |)γ (μ) − (di |qi |)γ (μ)

]

+ (ln ε−1
d )ΔNi j .

(6)

Choosing the basis so that ΔNi j is absorbed into the gen-
eration term (fixing α1,0 accordingly) and defining κ ≡ ε−1

q
yields the canonical form

ln
mi

m j
= ζ1 ln di +ζ2 ln d j +(ln κ)

[
(d j |q j |)γ (μ) − (di |qi |)γ (μ)

]
, (7)

which matches the RS result in Eq. (15) up to notation. The
q=0 neutrino limit is automatic since the charge-generation
term vanishes. Our empirical template Eq. (1) encodes the
same combination via a simple non-linearity; we do not claim
a UV-complete derivation here.

7.2.2 Minimal example: partial compositeness

In composite Higgs models with partial compositeness,
fermion masses arise from linear mixings yLi q̄LiORi and
yRi ŌLi ψRi with a strong sector, giving mi ∼ Y∗ yLi yRi v

where Y∗ is an O(1) strong-sector Yukawa. Parametrize the
mixings as

yLi ∝ dζ1/2
i exp

[
− ρ

2 (di |qi |)γ (μ)
]
,

yRi ∝ dζ2/2
i exp

[
− ρ

2 (di |qi |)γ (μ)
]
,

(8)

encoding mild generation dependence and a small charge-
generation deformation. Then

ln
mi

m j
= ζ1 ln di +ζ2 ln d j +ρ

[
(d j |q j |)γ (μ) − (di |qi |)γ (μ)

]
,

(9)

matching the same additive structure as Eqs. (15) and (7); for
q=0 the charge term vanishes. This is a minimal parametriza-
tion (no UV claim), included to illustrate that the required
d–|q| dependence can also arise in PC-type settings.

7.2.3 Minimal example: warped extra dimensions

In Randall–Sundrum models [14–16], fermion masses arise
from wavefunction overlaps. Standard implementations use
constant bulk masses. Our pattern suggests a more complex
structure. We show that a standard Randall–Sundrum (RS)
setup produces the two key ingredients of Eq. (1)—a mul-
tiplicative generation factor and a charge-weighted (d|q|)γ
term—under mild, explicit assumptions.
Setup Consider RS1 with metric ds2 = e−2kyημνdxμdxν +
dy2, y ∈ [0, πR], and bulk Dirac masses m5,Li = cLi k,
m5,R j = cR j k for the i th left- and j th right-handed zero
modes. The canonically normalized zero-mode wavefunc-
tions scale as fLi (y) ∝ e(1/2−cLi )ky , fR j (y) ∝ e(1/2−cR j )ky .
The Yukawa entry is the overlap

Yi j ∝
∫ πR

0
dy e−4ky fLi (y) fR j (y) � NLi NR j e

[1−(cLi +cR j
)]kπR

,

(10)

where NLi and NR j are the normalization factors (explicit
forms not needed below). Hence the diagonal masses scale
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as

mi ∝ NLiNRi e
[1−(cLi +cRi )]kπR . (11)

Assumption 1 (generation prefactor) Empirically the fit
prefers multiplicative factors dζ1

i and dζ2
j in Eq. (1). In the

RS overlap, such factors arise from the smooth c-dependence
of the zero-mode normalizations when the bulk masses vary
mildly with a generation label d (mass ordering); cf. Eq. (11).
We parametrize this by

NLiNR j ∝ dζ1/2
i dζ2/2

j , (12)

with signs ζ1 > 0, ζ2 < 0 matching the quark and charged-
lepton fits (Sects. 3, 4).

Assumption 2 (charge-generation coupling) To capture the
observed (d|q|)γ dependence (and theq → 0 neutrino limit),
take the sum of bulk masses to acquire a small, universal
deformation that couples electric charge to generation:

cLi + cRi = c0 + λ(di |qi |)γ , (13)

with λ dimensionless and γ the same exponent that appears
empirically. This preserves standard RS localization while
linking flavor and gauge structure in the minimal way sug-
gested by the data.

Result Using (11), the ratio of diagonal masses is

ln
mi

m j
= ζ1

2
ln di + ζ2

2
ln d j + kπR

[
(cL j + cR j ) − (cLi + cRi )

]

= ζ1 ln di + ζ2 ln d j︸ ︷︷ ︸
generation factor

+ (2λkπR)
[
(d j |q j |)γ − (di |qi |)γ

]
︸ ︷︷ ︸

charge-generation term

,

(14)

after absorbing the factor 1/2 into ζ1,2 (pure convention).
Defining ρ ≡ 2λkπR and recalling |q| = 0 for neutrinos,

Eq. (14) implies

ln
mi

m j
= ζ1 ln di+ζ2 ln d j+ρ

[
(d j |q j |)γ − (di |qi |)γ

]
, (15)

i.e., the same additive dependence on {ln d, (d|q|)γ } that
underlies our empirical pattern. Our template Eq. (1) uses
a non-linear (exponentiated) encoding of this linear com-
bination at the level of ln(mi/m j ); empirically this captures
the data most parsimoniously (Sect. 3.7). The q = 0 neutrino
limit is immediate since the charge-generation term vanishes.
We therefore view Eq. (15) as a minimal RS mechanism that
yields the required d–|q| dependence, without claiming iden-
tity to Eq. (1).

Comments (i) Nothing in Eq. (15) is tuned: a mild defor-
mation of the bulk masses yields ρ = O(1), while kπR

takes its usual RS value. (ii) Allowing a small left–right split
cLi �= cRi only shifts ζ1,2 without affecting the (d|q|)γ struc-
ture. (iii) Because q → 0 kills the second term, the q = 0
constraint from the neutrino sector is automatic. A more elab-
orate UV origin for the deformation can be provided (e.g.,
brane kinetic terms or gauged horizontal symmetries), but is
not required for this minimal example. We do not claim a UV-
complete derivation here; the FN and RS constructions are
explicit, economical frameworks that reproduce the observed
multiplicative d–|q| structure with O(1) parameters. Build-
ing a fully UV-complete realization is beyond the scope of
this empirical paper.

We note that both FN-typeU (1)F settings and RS geome-
tries admit UV-complete embeddings in explicit compactifi-
cations; our goal here is only to show that the required mul-
tiplicative d − |q| structure arises from minimal, standard
ingredients.

7.2.4 Discrete flavor symmetries

Models based on A4 [10,17], S4 [18], etc., typically yield
fixed Clebsch–Gordan coefficients. Reproducing our pattern
requires:

– Multiple flavon fields with hierarchical VEVs:
〈φ1〉/Λ1 	 〈φ2〉/Λ2 	 1.

– Effective operators at different orders:
(Liφ

n1
1 φ

n2
2 E j H)/Λn1+n2 .

– The powers n1, n2 must be generation- and charge-
dependent to yield the observed structure.

– Note: The generation-dependent power-law dζ1
i dζ2

j
requires going beyond minimal discrete implementa-
tions, possibly through sequential symmetry breaking or
additional continuous symmetries.

These modifications enable discrete symmetry models to
approximate the ansatz’s generation- and charge-dependent
structure, though achieving the exact form may require addi-
tional theoretical mechanisms.

7.3 The neutrino constraint: implications of q = 0

A particularly stringent constraint comes from the neutrino
sector where q = 0 causes the κ term to vanish entirely. This
implies:

– Any UV completion must explain why electric charge
enters through (d|q|)γ rather than qγ alone.

– Models attempting to unify quark and lepton sectors must
naturally produce this vanishing.

– The residual pattern mi+1
mi

= exp
[
dζ1
i+1d

ζ2
i

]
for neutrinos

provides an independent test.
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– See Eq. (3) for the explicit q = 0 limit.

This feature severely constrains grand unified theories where
quarks and leptons sit in common multiplets—the mecha-
nism generating the κ(d|q|)γ term must respect the q → 0
limit.

7.4 Common themes and future directions

All successful modifications share key features:

1. Flavor and gauge structures must be intrinsically linked,
not independent, as required by the (d|q|)γ term and the
neutrino sector’s q = 0 constraint.

2. The generation index must enter through approximate
continuous symmetries or geometric factors.

3. The electric charge dependence suggests electroweak
symmetry breaking may play a role in flavor.

These modifications are illustrative rather than exhaustive.
The empirical pattern provides a clear target [10,19] for
model builders: any complete theory of flavor should explain
not just the existence of hierarchies, but their specific func-
tional form across all fermion sectors.

8 Discussion and outlook

8.1 Hierarchy of empirical support

1. Quarks: over-constrained success Thirty independent
ratios across six scales confront four parameters per scale
(or five/six in the global fit). The resulting χ2/dof 	 1
and the modest, � 6%, deviations from RunDec v3.1
evolution (Sect. 6) make the quark sector the most com-
pelling evidence for Eq. (1).

2. Charged leptons:under-constrainedbutnaturalEffec-
tively two ratios versus four parameters render the fit
tautological, yet the extracted (κ, ζ1, ζ2, γ ) are all O(1)

and the ratios stay flat across six decades in energy. Any
future detection of significant running not captured by
γ (μ) would immediately falsify the ansatz.

3. Neutrinos: consistency only (for now) With q = 0, the
formula collapses to Eq. (3); two exponents are fixed by
the two measured mass splittings. The test is merely that
some (ζ1, ζ2) of natural size exist for the allowed anchor
window. Once an external observable pins m1 and the
effective generation indices are established, the sector will
become predictive and directly comparable to quarks and
leptons.

8.2 Relation to other empirical mass relations

– Koide-type relations. Koide’s [1] celebrated lepton for-
mula provides a striking mass relation that remains very
stable under renormalization-group evolution, but cannot
be extended to quarks where RG running is significant,
nor to neutrinos without sector-specific modifications.
More fundamentally, such relations work beautifully in
the charged-lepton sector but cannot be applied across all
three fermion sectors with a single functional form.

– Texture and GUT relations (e.g., Georgi–Jarlskog [2],
Froggatt–Nielsen [3]). These link selected Yukawa eigen-
values at the unification scale, typically md = me or
mb = mτ , but fail when run to low energy or across all
generations simultaneously. By contrast, Eq. (1) fits suc-
cessive ratios at every scale and works unchanged in all
three sectors.

– Democratic/seesaw models. Approaches based on ran-
dom O(1) Yukawa entries reproduce hierarchies statisti-
cally, not algebraically, and make no precise ratio predic-
tions. The purely multiplicative structure of Eq. (1) sug-
gests a broken horizontalU (1) or discrete flavor symme-
try acting on the ordered pair (d, q) [8]. Whether realized
through Froggatt–Nielsen charges or wavefunction local-
ization in warped space (see Sect. 7), any viable theory
should now reproduce both the running exponent γ (μ)

and the O(1) coefficients inferred here.

8.3 Near-term tests

– High-precision lattice QCD can confront the (t/b) pre-
diction at the ∼ 5% level, provided bottom-quark mass
uncertainties improve from the current ∼ 0.5%—as
reported in recent N f = 2 + 1 + 1 heavy-quark sim-
ulations [6,20]—toward sub-percent accuracy.

– Improved mτ measurements at Belle II will shrink the
allowed charged-lepton parameter space and test the
scale-independence implied by a constant γ .

– Cosmologyor 0νββ that pins any neutrino anchor observ-
able will fix (ζ1, ζ2); the ansatz then predicts the remain-
ing observables and becomes falsifiable in the neutrino
sector.

9 Conclusions

The pattern revealed in this work is empirically robust. A
single functional form, constructed from the only two labels
that distinguish Standard Model fermions, fits all measured
fermion mass ratios with stable parameters.

For the quark sector, whether fitted scale-by-scale (24 or
18 parameters), globally (five or six parameters), with or
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without experimental uncertainties, the same fourO(1) num-
bers emerge: κ ∼ 2.3, ζ1 ∼ 1.16, ζ2 ∼ −0.8, γ ∼ 1.1.

This stability is remarkable: parameter variations for
quarks remain below 5% across eight distinct fitting strate-
gies spanning ten orders of magnitude in energy scale. The
pattern extends beyond quarks—charged leptons and neutri-
nos respect the identical functional form with equally natural
parameter values. Thus, the quark sector provides strong evi-
dence, the charged-lepton sector supplies a non-trivial con-
sistency check, and the neutrino sector offers a clear path
to future falsification. This cross-sector universality, com-
bined with the minimal input requirements (generation index
and electric charge only), suggests a fundamental organizing
principle in flavor physics.

The specificity of this empirical pattern is further demon-
strated by comprehensive permutation analysis: among all
120 possible assignments of mass ratios to quantum number
pairs, only the physical assignment yields acceptable fits (see
Fig. 9). Alternative mappings produce residuals from 3 to 100
times larger, indicating that Eq. (1) encodes specific physical
structure rather than mathematical flexibility. This combina-
tion of parameter stability and assignment specificity pro-
vides compelling evidence for genuine organizing principles
in the fermion mass spectrum. A complementary change-of-
basis scan over all 720 chained (Hamiltonian-path) indepen-
dent five-ratio bases (Sect. 3.6) shows that the adjacent basis
is the only one with negative AIC/BIC, and that more alterna-
tive bases fail to fit than succeed (376 vs. 343), underscoring
both specificity and well-posedness.

Previous empirical relations have generally not achieved
both a comprehensive scope and parameter stability. Koide-
type relations work beautifully within single sectors but can-
not be extended. Texture and GUT models require sector-
specific modifications and many more parameters. Our four-
parameter expression simultaneously describes all three
fermion sectors with residuals below 4%.

The theoretical implications outlined in Sect. 7 demon-
strate that our empirical pattern places non-trivial constraints
on model building. The required modifications—linking fla-
vor structure to electric charge—point toward a more uni-
fied understanding of these supposedly independent param-
eters. Whether this reflects a fundamental symmetry prin-
ciple or emerges from dynamics remains an open question
for future investigation. For completeness, Sect. 7.2 provides
three minimal worked examples that reproduce the multi-
plicative d − |q| structure.

Our analysis provides empirical targets rather than theo-
retical explanations. The remarkable fit quality and cross-
sector universality suggest these patterns reflect genuine
organizing principles, but identifying the underlying physics
remains an open challenge.

A complete theoretical explanation of this empirical pat-
tern would need to address several key questions: Why

do generation index and electric charge enter multiplica-
tively? What dynamics produce the specific values κ ∼ 2.3,
ζ1 ∼ 1.16, ζ2 ∼ −0.8? Why does the exponent γ run loga-
rithmically for quarks but remain constant for leptons? And
most fundamentally, what is the origin of the (d|q|)γ struc-
ture that respects the q → 0 limit for neutrinos? The the-
oretical modifications outlined in Sect. 7 provide necessary
conditions, but a fully satisfactory theory must derive these
features from first principles.

We therefore propose this empirical relation as an impor-
tant constraint that realistic flavor models may wish to con-
sider. Any viable theory of fermion masses should not only
explain individual sector patterns, but also account for why
the same four natural numbers appear to govern all fermion
mass ratios across the entire Standard Model spectrum.

Whether this pattern is a clue to flavor dynamics or a
numerical accident will be decided by the next generation
of precision mass measurements.
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A Expected χ2 for correlated uncertainties

When experimental errors are highly correlated, the expected
χ2/dof for a correct model can be significantly less than 1.
This arises because correlated uncertainties reduce the effec-
tive number of independent measurements, leading to a sup-
pressed χ2 value. Mass running studies often exhibit such
correlations since systematic uncertainties in renormaliza-
tion scale choices affect all energy scales similarly.

For N observables with a single fully correlated scale error
σ , the covariance matrix is Ci j = σ 2. Its Moore–Penrose
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inverse is C+
i j = 1/(N σ 2), so for residuals δi we have

χ2 = δTC+δ = (
∑

i δi )
2

N σ 2 ∼ χ2
1 ,

whose expectation value is 〈χ2〉 = 1, i.e., 〈χ2/dof〉 =
1/(N − k) 	 1 for N � 10 and k ≤ 5. This general
effect explains why excellent fits to correlated data can yield
χ2/dof 	 1 without indicating overfitting.

B Adjacent-ratio basis and change-of-basis invariance

Let (m1, . . . ,m6) ≡ (mu,md ,ms,mc,mb,mt ) at a fixed
scale and define the five adjacent log-ratios rk ≡ ln(mk+1/

mk), k = 1, . . . , 5. For any i > j ,

ln

(
mi

m j

)
=

i−1∑
k= j

rk,

so the mapping from adjacent ratios to arbitrary pairwise
ratios is linear with integer coefficients. Any other inde-
pendent choice of five ratios corresponds to r′ = A r with
A ∈ GL(5, Z). If the full covariance C of r is propagated to
r′ as C ′ = ACAT , then the weighted least-squares objective

χ2(θ) = [
r − f(θ)

]T
C−1[r − f(θ)

]

is unchanged under the simultaneous transformation (r, f,C)

�→ (r′, Af,C ′), and the normal equations for θ are iden-
tical up to floating-point rounding. Hence, using adjacent-
generation ratios is a basis choice that does not bias parameter
estimation.

Practical note The invariance proven above requires car-
rying through the full 5 × 5 covariance for each basis.
Public inputs for quark running provide diagonal (or effec-
tively diagonal) errors for the five ratios at each scale; with
that pragmatic weighting, the log-likelihood is not strictly
invariant under A ∈ GL(5, Z), and numerical condition-
ing becomes basis dependent. This is precisely what the
information-criterion scan in Sect. 3.6 quantifies: the adja-
cent basis is uniquely well posed (negative AIC/BIC), many
alternative bases converge but are decisively worse (large
positive AIC/BIC), and a majority fail to admit a finite-
likelihood optimum under identical settings.

C Basis enumeration, dynamic range and AIC/BIC

What we call a “basis” At a fixed scale, let

r = (ln(md/mu), ln(ms/md), ln(mc/ms), ln(mb/mc),

ln(mt/mb))
T

denote the adjacent-ratio log vector. Any other independent
five-tuple of pairwise ratio logs can be written as r′ = A r
with an integer unimodular matrix A ∈ GL(5, Z) whose
rows each represent a difference of two log masses (a sin-
gle pairwise ratio).18 We enumerate all 720 ordered chained
(Hamiltonian-path) integer bases of this type used in Fig. 2;
the adjacent basis is the identity A = �.

Conditioning and dynamic range. Although every spanning
tree yields a valid Z-basis, their numerical behaviour dif-
fers when only diagonal uncertainties are used. Chained
(adjacent) trees keep the five basis ratios closer to unity
in magnitude (smaller | ln rk |), whereas non-chained trees—
especially those linking the lightest to the heaviest masses—
produce basis ratios with widely varying | ln rk |. In that set-
ting the effective weighting becomes strongly anisotropic and
the normal equations are more ill-conditioned. Empirically
this manifests as higher failure rates and worse AIC/BIC
for non-chained trees. Thus chained bases, though not well
conditioned, are less badly pathological and comparatively
robust in our scans.

Remark (when do five ratios form a basis?) Let rk =
ln(mak/mbk ) and let G be the undirected graph on {1, . . . , 6}
with edges {ak, bk}. With five edges on six vertices, the rows
{eak − ebk } span the five-dimensional log-ratio space iff G is
connected, i.e., a spanning tree. In that case, for any u, v the
unique path P(u → v) in G yields

ln
mu

mv

=
∑

(a,b)∈P(u→v)

σab ln
ma

mb
, σab ∈ {±1},

so all 30 pairwise ratios are reconstructible. Our scan con-
siders the 6! = 720 Hamiltonian-path (“chained”) spanning-
tree bases; other spanning trees are related by unimodular
transformations in GL(5, Z).

Dynamic range (conditioning proxy) For each basis we
compute a proxy for numerical conditioning,

D(A) ≡ maxi, j |Ai j |
mini, j : Ai j �=0 |Ai j | . (16)

This scales like a condition number for the linear map r �→
r′ and correlates with estimator instability. Any monotone
proxy for conditioning gives the same qualitative picture;
the adjacent basis minimizes D by construction.19

18 Appendix B gives the change-of-basis invariance when the full
covariance is propagated.
19 Equivalently, one may multiply by cond2(A) to penalize near-
singular maps; both choices pick out the adjacent basis in practice.
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LikelihoodandcriteriaFor each basis we refit the samefive-
parameter global model to the 30 data points expressed in that
basis and evaluate the Gaussian least-squares likelihood

L(θ) = 1

(2π)N/2 |C |1/2 exp
[
− 1

2 Δ(θ)�C−1Δ(θ)
]
,

Δ(θ) ≡ r − f (θ),

(17)

where r collects the five ratio logs at each of the six reference
scales (see Appendix B), f (θ) are the model predictions, and
C is the (block-)diagonal covariance built from the quoted
per-ratio uncertainties at those scales. The information crite-
ria are then

AIC = 2k − 2 ln L̂, BIC = k ln N − 2 ln L̂, (18)

with k = 5 and N = 30 fixed across the scan and L̂ = L(θ̂)

the maximized Gaussian likelihood evaluated at the best-fit
parameters for that basis. Because k and N are constant,
BIC differs from AIC by an additive constant and yields the
same ranking; hence only AIC is shown in Fig. 2. Bases for
which the optimizer fails to converge or return well-posed
parameters correspond to effectively infinite AIC/BIC; we
report these as “no fit” in the main text (376 of 719 non-
adjacent bases).
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